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ABSTRACT

The problem of efficiently performing transformations from geocentric to geodetic
coordinates has been addressed at previous DIS Workshops. This paper extends the work
presented at the Fourteenth DIS Workshop. As a consequence of the new algorithm for
geocentric to geodetic coordinate conversion, a subsequent conversion to Universal
Transverse Mercator coordinates is made considerably more efficient. No additional
trigonometric or square root evaluations are required and accuracy is not degraded.

INTRODUCTION

The Distributed Interactive Simulation (DIS)!+2
environment requires frequent transformations
between the DIS standard coordinate system and
other coordinate systems used at DIS nodes. When
entities are maneuvering, this requirement induces
substantial computational loads on both the sending
and receiving nodes. One of the more stressing
situations occurs when a point in the standard
geocentric system is transformed to geodetic
coordinates and subsequently to Universal
Transverse Mercator (UTM) coordinates.

New algorithms have been developed that
substantially increase the efficiency of the
transformation from geocentric to geodetic
coordinates3+4. This note describes an extension of
these algorithms that increases the efficiency of the
transformation from geodetic to UTM coordinates.
Results of this note should be applicable to

applications other than DIS where efficient
transformations of the type addressed are required.

Background

The DIS program maintains a set of recommended
standard algorithms for coordinate transformations
at the Visual Systems Laboratory of the Institute
for Simulation and Training (IST), University of
Central Florida. Proposed new algorithms are sent
to IST for testing in terms of efficiency and
accuracy. The best of the current implementations
for obtaining UTM coordinates is based on the
transformation equations contained in a USGS
Bulletin “Map Projections Used by the U. S.

Geological Survey”S. These equations are written
in a form that is readable, preserves accuracy and
applies to all situations. However, the direct
implementation of the equations, does not lead to
an efficient implementation.



In the DIS environment, the conversion to UTM
coordinates almost always follows a conversion
from geocentric coordinates to geodetic
coordinates. As a consequence, the trigonometric
functions of latitude are available from the
algorithm of references 3 and 4 and need not be re-
computed. Likewise, the radius of curvature is also
available. In addition, the UTM transformation
equations involve trigonometric functions of
integer multiples of the latitude. By utilizing
multiple angle identities, these evaluations can
done without evaluating any trigonometric
functions. These observations permit the
transformation equations to be written in a form
that allows maximal factorization of common
factors and requires no square roots or
trigonometric calculations. The resulting procedure
is estimated to be on the order of fifty percent
faster than the existing recommended DIS
procedure.

The Transverse Mercator Coordinate
System

The Transverse Mercator system is a conformal
(angle preserving) projection of points relative to a
geodetic Earth model onto a plane tangent to the
geodetic surface at the intersection of the central
meridian and the equator. Under this
transformation both the central meridian and the
equator map into straight lines. No other meridian
or parallel maps to a straight line under this
projection. While conformal mappings preserve
angles other distortions are introduced as shown in
Figure 1.

A

Figure 1

Meridians and parallels in the Transverse
Mercator coordinate system.

As can be seen in the figure, the distortions are
small near the origin and increase away from it. To
minimize this distortion, the concept of a Universal
Transverse Mercator (UTM) projection is
introduced.

The Universal Transverse Mercator
(UTM) Coordinate System

UTM coordinates are defined in the following
manner. The Transverse Mercator projection is
modified by introducing a set of longitudes spaced
six degrees apart on the equator. Each of these
points is used as a local origin for a Transverse
Mercator projection. In essence, the central
meridian is replaced by a set of meridians equally
spaced around the equator. This spacing
corresponds to a set of 60 UTM zones. In any one
zone the Transverse Mercator projection becomes
localized and distortions are minimized.

Transverse Mercator projections are defined with
respect to a geodetic earth model, the associated
rotating geocentric coordinate system and the
corresponding geodetic coordinate system. A
number of reference geodes have been used in

astrogeodetic work®. These all have the form:

M X/a2+(Y/a2+Z/c)? = 1.

Figure 2 below depi¢ts the geometry of the
geocentric (Cartesian) [system and the geodetic
system in three dimensions. The geocentric
coordinates of a poin{ P are (X,Y,Z) and the
corresponding geodetic ¢oordinates of P are (¢,A,h)
where ¢ is latitude, A |is longitude and h is the
height above the refetence ellipsoid. The line
connecting the Z axis o P is orthogonal to the
tangent plane at the poi

Figure 2
Cartesian and Gepdetic Systems

The transformation fram geodetic to geocentric
coordinates is st.raightfoTward6 and is given by:




2) X = (RN+h) cos ¢ cos A,
3) Y = (RN+h) cos ¢ sin A,
@) Z = (RN c2 /a2 +h)sin ¢.

where RN is the radius of curvature of the prime
vertical and is given by

5) RN =a/[1 - [sin 2¢] (a2 - c2)/a2 172,

The inverse transformation is expressible in closed
form,‘7 but this generally results in an inefficient
implementation. An accurate and efficient iterative
algorithm is contained in references 3 and 4.

The longitude A is given by
() A=tan"1(Y/X),
where -T<A<T.

Since the two minor axes of the geode are equal,
the projection of the geode on any meridional
plane defines an ellipse. The eccentricity of the
ellipse is defined by

W) £2 =(a2-c2)/a2

It is convenient to define an additional constant €”
squared by

8) e 2=(a2-c2)/c2
The flattening ratio f of the ellipse is defined by
) f=(a-c)/a.

Reference 7 contains a good discussion of the
process for transforming from geodetic to
Transverse Mercator to UTM coordinates. In the
appendix, the equations used in reference 5 and in
the DIS standard code are summarized using
notation consistent with references 3 and 4.

EFFICIENT TRANSFORMATION FROM
GEODETIC TO UTM COORDINATES

The transformations given in the Appendix involve
the sine of multiple angles. Most of the
implementations of these equations and similar
equations contained in reference 7 call the sine
function repeatedly to evaluate the sine of each
multiple angle. This is relatively costly in terms of
processing time. The use of the well known
multiple angle identities avoids the unnecessary

calls. However, multiple angle identities are not
unique and some care is needed to pick a form that
maximizes the factorability of the resulting
equations. The variables used in this section are
defined in the appendix. Accordingly the following
are used:

(10) sin2¢p =2sin¢ cos¢,
(11) cos2¢ =1-2sin 2¢,
(12) sind¢ =2sin2¢ cos2¢,

(13)  sin6¢p =2sin2¢ cos22¢
+sin2¢ (1-2sin22¢ ).

Using equations (12) and (13), equation (35) of the
appendix can be written

(14) M =a(Ag¢-sin 2[Ag -
2¢0520 (A4 - Ag(1- sin22¢ )]}.

As previously noted, when UTM coordinates are
needed in DIS applications they almost always
follow a transformation from geocentric to geodetic
coordinates. If the algorithms of reference 4 or 5
are used, the following are already computed using
just square roots: sin¢, coso, sin2¢, coszq), tan¢ and
RN. These values can be used in an integrated
routine that transforms from geocentric to geodetic,
and on option, to UTM coordinates. Coupled with
(10) to (13) the computation of M reduces to
simple algebraic operations.

As shown in the appendix, the Transverse Mercator
coordinates of a point, x1v and yqy, are computed
prior to computing the UTM coordinates. The
equations for xyy and y1y are polynomials in A, If
these equations were coded as shown, optimizing
compilers would automatically factor out common
factors in A. Unfortunately, many of the existing
implementations compute the powers of A and
store them as constants prior to coding the
polynomial. As a result, the compiler may not be
able to recognize the common factors. To insure
that the factorization occurs the equations should
be written as follows,

(15)  xym=koRNA{1+A2[(1-T+C)/6+
(5 - 18T + T2 +72C- 58 £2)A2/120}}.
(16)  yrm=ko {M+RNtand A2[1/2+

AZ((5 - T+9C +4C2) /24 +



(61 -58T + T+600C -330 £°2 )AZ / 720)]).

When a particular geode is used, further economies
can be obtained by reformatting (14), (15) and (16).
This reformatting also will insure that constants are
not repeatedly computed. Accordingly, let

7y  Bg=akpA q,

(18) Bz =2akpAp,
(19) B4 =4akoAq4,
(20)  Be=4akpAs,

(21)  B7=Bs-Bg,
(22)  Bg=4Bs,

(23) v =sin ¢ cos ¢,

(24)  u=sin 2,

(25) Mg=koM.

With these definitions

(26) M =Bg¢-v(B2- (1-2u)[B7+v2Bgl),
@7 xtm=RN A{ko +AZ [(1-T+C)ko /6+

(5-58 £°2-18T+T2+72C)A2 k() /1201 },

(28)  yrm={M+RNtan¢ A2 [ko / 2+
A2((5-T+9C +4C2 Yk / 24 +

(61-330 £ 2-58T+T2+600C) A2k 720)1},

where the terms kg /2 , kg /6 , kg /24 , k(o /120,
kq/720, 5- 58 €2 and 61 - 330 €2 are pre-
computed global constants.

RESULTS

Formal timing studies that compare the new
formulation to the DIS standard have not yet been
completed. The DIS standard code based on
reference 5 was obtained from the Visual Systems
Laboratory of the Institute for Simulation and
Training, University of Central Florida during
February of 1996. Operations counts were obtained

for each distinct call of the routine (global
constants were ignored). Similarly, operations
counts were obtained for the new algorithm (i.e.
equations (23),(26),(27),(28),(32).(33).(34),(40),
(42),(44) and (46).

The results are summarized in Table 1 below.

Table 1. Operations count for standard and
new algorithm.

DIS/IST New Algorithm
Multiply 40 35
Add 23 22
Divide 6 0
Square Root 1 0
Sine or Cosine 5 0

In the presentation of reference 3 at the 13th DIS
Workshop experimental data were presented
indicating that square root function calls take
approximately the same processing time as five
floating point multiplies on machines equipped
with floating point units. Similarly, the sine or
cosine take the same time as five to twelve floating
point multiplies, depending on the particular
machine. If all the arithmetic operations in Table 1
are assumed to take the same time as a floating
point multiply, estimates of relative execution time
can be made.

The above analysis shows that the DIS/IST
algorithm takes between 99 and 134 operations
while the new algorithm takes 57 operations. The
percent improvement is defined in terms of old
time minus the new time divided by the old time. In
such terms the estimated improvement ranges from
42 to 57 percent. These estimates may be
conservative in that the DIS/IST procedure takes 46
long operations (multiply or divide) while the new
algorithm takes only 35 and generally the long
operations are more expensive in terms of
computer time.

Howard Lu of SAIC in Boston has implemented an
early version of the new algorithm and has found
improvements in the same range as above. The
author is indebted to Howard for communicating
this information.



CONCLUSIONS

The algorithm proposed above is most suitable for
DIS applications and may have utility in other
compute intensive environments. The procedure
should be readily adaptable to the standard UTM
transformations that are contained in the Military
Handbook (reference 7). These differ slightly from
the transformations appearing in reference 5, in that
more terms are used in some of the series
approximations.

APPENDIX

The transformations from geodetic to Transverse
Mercator coordinates are taken directly from
reference 5. The mathematical form of the
equations shown below corresponds exactly to that
used in the reference. A few variable name changes
are employed to make these equations correspond
to the notation used in references 3 and 4.

Transformation from geodetic to Transverse
Mercator

A point with geodetic coordinates (¢,A,h), where
the angles are in radians, has Transverse Mercator
coordinates (xy,yTM) given by,

(29) xmm=koRN {A+(1-T+C)A3/6+
(5- 18T + T2 +72C- 58 £2)A5 7120},
(30)  yrm=ko {M+RN tand (A2/2+
(5-T+9C +4C2) A% /24 +
(61 -58T + T+600C -330 £2) A6/ 720},

where k() is the point scale factor and

(€2))] AQ = central meridian in radians,

(32) A= -Ap)coso,

(33) T=tan2¢,

(34) C= e2cos? o,

35) M=a(Ag ¢-A2sin 20+ A4 sin 4¢ -
Ag sin 6¢),

(36) Ag= 1-€2/4-3¢4/64-5¢e6/256,

BT  A2=3e2/8+3e4/32+45¢€6/1024,

(38)  A4=15¢4/256 +45¢6 /1024 ,
(39)  Ag=35€6/3072.

The altitude h does not enter into the
transformation to Transverse Mercator or to UTM
coordinates.

Transformation from Transverse Mercator to UTM

The UTM projection differs from the Transverse
Mercator projection as follows:

1. The longitude of each central meridian,
in degrees, is given by 3 + 6n,
n=20,1,..,59.

2. The point scale factor kg along the central
meridian is 0.9996.

3. The northing coordinate yyry has an origin 0
at the equator for points in the northern
hemisphere. The southing coordinate yyry
has an origin equal to 10,000,000. meters at
the equator for points in the southern
hemisphere.

Southing decreases as points move in the
direction of the south pole.

4. The easting coordinate xyrwm, has its origin
equal to 500,000. meters at the central
meridian.

If the longitude A is expressed in radians, the UTM
zone is found from:

40) z=Greatest Integer < (31+1802/(6m)),
forO<A<m.

C3Y) z=Greatest Integer < (180A/(6%)-29),
form<A<2m

For each zone, the central meridian Ag, expressed
in radians, is given by:

42) AQ = (6z - 183)r/180 forz =31,
or
43) Ao =(6z + 177)n/180 for z <30.

Once the zone has been identified and the central
meridian computed, UTM coordinates are



computed, in meters, from Transverse Mercator
coordinates by

44) Xy = Xy + 500,000.

For points in the northern hemisphere,
@5y Yymm=Ymu

For points in the southem hemisphere,
(46)  Yypy = Y + 500,000.
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